博客
关于我
计算机视觉 创建全景图
阅读量:780 次
发布时间:2019-03-24

本文共 556 字,大约阅读时间需要 1 分钟。

在尝试使用RANSAC算法进行图像拼接的过程中,遇到了以下问题和解决思路:

错误分析与解决

在运行RANSAC算法时,出现了“ValueError: did not meet fit acceptance criteria”错误。这意味着模型在拟合过程中不满足预期的标准。可能的原因是特征点匹配不准确或噪声较大。

调整压缩设置

调整图片压缩大小:最初使用过小的图片导致Running error,适当增大图片大小以保证特征提取的质量。

优化delta值

调整delta值:通过多次尝试找到合适的delta值,确保图像的平移和拉伸效果适中,避免出现黑框或断层现象。

替换特征提取方法

为了提高特征匹配准确率,尝试使用不同的特征提取算法,如SIFT、FAST等,结合不同的匹配方法,如BruteForce、CrossRatio等直到找到最佳的组合。

光线和视角调整

验证在拍摄图片时,光线变化和视角稳定性是否达到要求,避免大光线变化导致特征点匹配不准。

代码小优化

说明在使用过程中需要注意一些代码逻辑的细节,比如在 baiting 的 额外空间,需要确保点的坐标正确。

应用总结

通过多次实验和参数调整,成功实现了图像的无缝拼接。经验表明,在不同光照和角度下的图片拼接面临更大挑战,需确保基础图像质量和贴图准确性。

转载地址:http://nghkk.baihongyu.com/

你可能感兴趣的文章
mysql索引
查看>>
mysql索引
查看>>
Mysql索引,索引的优化,如何避免索引失效案例
查看>>
Mysql索引、命令重点介绍
查看>>
mysql索引、索引优化(这一篇包括所有)
查看>>
Mysql索引一篇就够了
查看>>
MySQL索引一篇带你彻底搞懂(一次讲清实现原理加优化实战,面试必问)
查看>>
MySQL索引下沉:提升查询性能的隐藏秘
查看>>
MySql索引为什么使用B+树
查看>>
MySQL索引为什么是B+树
查看>>
WARNING!VisualDDK wizard was unable to find any DDK/WDK installed on your system.
查看>>
MySQL索引介绍及百万数据SQL优化实践总结
查看>>
Mysql索引优化
查看>>
MySQl索引创建
查看>>
mysql索引创建及使用注意事项
查看>>
mysql索引创建和使用注意事项
查看>>
MySQL索引原理以及查询优化
查看>>
Mysql索引合并(index merge)导致的死锁问题
查看>>
MySQL索引和查询优化
查看>>
mysql索引底层数据结构和算法
查看>>